程瑶

作者:时间:2019-06-12点击数:

最高学历、学位: 研究生、博士

职称: 副教授

职务: 系主任

办公室: 信息与计算科学系2教321室

电子邮箱: ycheng@usts.edu.cn


一、基本情况

2010.9—2016.6, 就读于南京大学数学系,获理学博士学位;2016.9—至今, 工作于苏州科技大学信息与计算科学系

主讲数学分析数学建模、计算方法等本科生课程及科学计算、间断有限元方法等研究生课程曾获苏州科技大学第九届青年教师讲课竞赛二等奖及青年教师标兵等。作为第一指导教师获得全国大学生数学建模竞赛全国一等奖(2022)美国大学生数学建模竞赛特等奖提名(2021)及“华为杯”研究生数学建模竞赛三等奖(2022、2025)等。

二、主要研究领域及学术成就

从事偏微分方程数值解的研究。主要研究兴趣为奇异摄动问题的数值解以及局部间断有限元方法的理论与应用。近年来,在Math. Comp.、Numer. Math.、ESAIM:M2AN、J. Sci. Comput.等期刊上发表论文四十余篇。主持完成国家自然科学基金、江苏省自然科学基金、江苏省高校自然科学基金各1项以及校级项目多项。入选江苏省“青蓝工程”优秀青年骨干教师培养对象。担任中国数学会奇异摄动专业委员会委员、中国仿真学会不确定性系统分析与仿真专业委员会委员、中国仿真学会仿真算法专业委员会委员及江苏省计算数学学会理事。

三、代表性科研成果

[1] Y. Cheng, X. Wang, M. Stynes*, Optimal balanced-norm error estimate of the LDG method for reaction-diffusion problems II: The two-dimensional case with layer-upwind flux, Mathematics of Computation, 95(357): 73–103, 2026.

[2] Y. Cheng, X. Wang, M. Stynes*, Pointwise convergence of the local discontinuous Galerkin method on a Shishkin mesh for 2D reaction-diffusion problems, ESAIM-Mathematical Modelling and Numerical Analysis, 59: 2415–2446, 2025.

[3] J. Kang, S. Jiang, Y. Cheng*, Optimal balanced-norm error estimate of the LDG method using alternating numerical fluxes for 2D singularly perturbed reaction-diffusion problems, Journal of Scientific Computing, 106(33), 2026

[4] J. Kang, Y. Cheng*, Optimal-order balanced-norm error estimate of the local discontinuous Galerkin method with alternating numerical flux for singularly perturbed reaction–diffusion problems, Applied Mathematics Letters, 165: 109503, 2025.

[5] D. Shi, J. Kang, Y. Cheng*, The LDG method equipped with generalized alternating numerical flux for a singularly perturbed reaction-diffusion problem in 1D, Journal of Applied Mathematics and Computing, 72(9), 2026

[6] D. Shi, Y. Cheng*, Uniform convergence analysis of the LDG method using generalized alternating numerical fluxes for 2D singularly perturbed reaction-diffusion problems, Computation & Applied Mathematics, 45(91), 2026

[7] Y. Wu, Y. Cheng*, Convergence analysis of the LDG method on two Duran-type meshes for reaction-diffusion problems, Journal of Applied Mathematics and Computing, 71(Suppl 1): S197–S215, 2025.

[8] Y. Wu, Y. Cheng*, The local discontinuous Galerkin method on graded meshes for 1d singularly perturbed convection–diffusion problems, Computation & Applied Mathematics, 44(204), 2025

[9] Y. Cheng, X. Wang, M. Stynes*, Optimal balanced-norm error estimate of the LDG method for reaction-diffusion problems I: The one-dimensional case, Journal of Scientific Computing, 100(2), Paper No. 50, 2024

[10] X. Wang, S. Jiang, and Y. Cheng*, Pointwise error estimate of the LDG method for 2d singularly perturbed reaction-diffusion problem, Numerical Algorithms, 100 (2025), 189-225

[11] X. Wang and Y. Cheng*, An improved pointwise error estimate of the LDG method for 1-d singularly perturbed reaction-diffusion problem, Applied Numerical Mathematics, 196 (2024) 199-217

[12] Y. Liu, X. Wang, Y. Cheng*, Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of convection-diffusion type, Applied Numerical Mathematics, 205: 16–37, 2024.

[13] Y. Liu and Y. Cheng*, Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of reaction-diffusion type, Journal of Computational and Applied Mathematics, 440, Paper No. 115641, 2024

[14] Y. Cheng, M. Stynes*, The local discontinuous Galerkin method for a singularly perturbed convection-diffffusion problem with characteristic and exponential layers, Numerische Mathematik, 154 (2023), no. 1-2, 283-318

[15] Y. Cheng, S. Jiang, M. Stynes*, Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem, Mathematics of Computation, 92 (343), 2065-2095, 2023

[16] Y. Cheng*, X. Wang, Optimal pointwise convergence of the LDG method for singularly perturbed convection-diffusion problem, Applied Mathematics Letters, 140 (2023), Paper No. 108590

[17] L. Yan, Z. Wang, Y. Cheng*, Local discontinuous Galerkin method for a third order singularly perturbed problem of convection-diffusion type, to appear, Computational Methods in Applied Mathematics, 23 (2023), no. 3, 751-766

[18] L. Yan, Y. Cheng*, Local discontinuous Galerkin method on graded meshes for a third order singularly perturbed problem, ZAMM Z. Angew. Math. Mech., 2023, 103(11), Paper No. e202300238

[19] L. Yan, Y. Cheng*, Local discontinuous Galerkin method for a third-order singularly perturbed problem of reaction-diffusion type, ZAMM Z. Angew. Math. Mech., 2022,102(12), Paper No. e202200238

[20] Y. Cheng*, Y. Mei, H.-G. Roos. The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems, Computers and Mathematics with Applications, 117(2022), 245–256

[21] Y. Cheng*, L.Yan, Y.J.Mei. Balanced-norm error estimate of the local discontinuous Galerkin method on layer-adapted meshes for reaction-diffusion problems, Numerical Algorithms, 91 (2022), 1597-1626

[22] Y. Cheng*, L. Yan, X. Wang, Y. Liu, Optimal maximum-norm estimate of the LDG method for singularly perturbed convection-diffusion problem, Applied Mathematics Letters, 128 (2022), Paper No. 107947

[23] Y. Cheng*,Y. Mei, Analysis of generalised alternating local discontinuous Galerkin method on layer-adapted mesh for singularly perturbed problems, Calcolo, 58:52, 2021

[24] Y. Cheng*, On the local discontinuous Galerkin method for singularly perturbed problem with two parameters, Journal of Computational and Applied Mathematics, 392 (2021), Paper No. 113485

[25] Y. Cheng*,C. Song, Y. Mei, Local discontinuous Galerkin method for time-dependent singularly perturbed semilinear reaction-diffusion problems. Computational Methods in Applied Mathematics, 21(1), 2021, 31-52

[26] Y. Cheng*, Optimal error estimate of the local discontinuous Galerkin methods based on the generalized alternating numerical fluxes for nonlinear convection-diffusion equations. Numerical Algorithms, 80(4), 2019,1329-1359

[27] Y. Cheng, Q. Zhang, H. Wang*, Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem. International Journal of Numerical Analysis and Modeling, 15(6), 2018, 785-810.

[28] Y. Cheng, X. Meng, Q. Zhang*, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Mathematics of Computation, 86 (305), 2017, 1233-1267

[29] Y. Cheng, Q. Zhang*, Local analysis of local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. Journal of Scientific Computing, 72(2), 2017, 792-819

[30] Y. Cheng, Q. Zhang*, Local analysis of the fully discrete local discontinuous Galerkin method for the time-dependent singularly perturbed problem. Journal of Computational Mathematics, 35(3), 2017, 265-288

[31] Y. Cheng, F. Zhang, Q. Zhang*, Local analysis of local discontinuous Galerkin method for the time-dependent singularly perturbed problem. Journal of Scientific Computing, 63(2), 2015, 452-477







上一条:傅勤 下一条:朱建青

Copyright undefinedcopy; 2020.苏州科技大学数学科学学院

手机版