最高学历、学位:研究生、理学博士
职 称: 教授
职 务: 数学科学学院党委书记
电子邮箱:
beewky@vip.163.com;kywang@usts.edu.cn
一、基本情况:
2011年苏州大学数学科学学院毕业,获理学博士学位。2005年8月至今在苏州科技大学任教。在东南大学数学系完成博士后研究工作。获苏州市优秀教育工作者称号,校优秀教育工作者称号,校优秀教师称号。现为江苏省学位与研究生教育学会指导教师专业委员会委员,江苏省概率统计学会第八届常务理事,苏州市现场统计研究会第六届理监事会副理事长。入选江苏省第五期“333高层次人才培养工程”第三层次。
二、主要研究领域及学术成就:
用概率统计中的极限理论等工具处理金融和保险中的风险度量问题。目前主要研究方向:处理带有金融风险和保险风险的相依风险模型的破产概率的估计;重点处理大额索赔(重尾分布)情形下若干风险模型的破产概率的估计;衡量风险模型中的相依性对破产概率的影响;讨论概率论中随机游动的相关问题。近五年发表论文20余篇,其中SCI收录论文10余篇。主持并完成2项国家自然科学基金项目,1项江苏省自然科学基金项目,1项中国博士后基金项目,1项江苏省博士后基金项目。获得江苏省统计科研优秀成果奖三等奖1项,苏州市自然科学优秀学术论文三等奖3项。
三、代表性科研成果:
[1]. Chenghao Xu, Kaiyong Wang,Xinyi Wu. The finite-time ruin probability of a risk model with stochastic return and subexponential claim sizes. Communications in Statistics—Theory and Methods, 2024, 53(6): 2194–2204.
[2]. Kaiyong Wang, Yang Yang, Kam C. Yuen. The uniform asymptotics for the tail of Poisson shot noise process with dependent and heavy-tailed shocks, Journal of Mathematical Research with Applications, 2023, 43(3): 335-349.
[3]. Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return, Journal of Industrial and Management Optimization, 2022, 18(3): 1541-1556.
[4]. Kaiyong Wang, Yanzhu Mao. Asymptotics of the finite-time ruin probability of dependent risk model perturbed by diffusion with a constant interest rate, Communications in Statistics—Theory and Methods, 2021, 50(4): 932–943.
[5]. Baoyin Xun, Kaiyong Wang, Kam C. Yuen. The finite-time ruin probability of time-dependent risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 2020, 37(2): 507-525.
[6]. Yang Yang, Tao Jiang, Kaiyong Wang, Kam C. Yuen. Interplay of financial and insurance risks in dependent discrete-time risk models, Statistics and Probability Letters, 2020, 162, Article ID 108752.
[7]. Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Levy price processes, Journal of Industrial and Management Optimization, 2019, 15(2): 481-505.
[8]. Kaiyong Wang, Lamei Chen, Yang Yang, Miaomiao Gao. The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 2018, 35(3): 1173-1189.
[9]. Kaiyong Wang, Miaomiao Gao, Yang Yang, Yang Chen. Asymptotics for the finite-time ruin probability in a discrete-time risk model with dependent insurance and financial risks, Lithuanian Mathematical Journal, 2018, 58(1): 113-125.
[10]. Yanzhu Mao, Kaiyong Wang, Ling Zhu, Yue Ren. Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 2017, 34(1): 243-252.
[11]. Zhongquan Tan, Kaiyong Wang. On Piterbarg’s max-discretisation theorem for homogeneous Gaussian random fields, Journal of Mathematical Analysis and Applications, 2015, 429(2): 969-994.
[12].Yang, Yang, Kaiyong Wang, Dimitrios G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 2014, 51(3): 669 - 684.