金海林

作者:时间:2019-06-12点击数:



出生年月:1974年9月

籍 贯:安徽芜湖

最高学历、学位: 研究生、博士

职 称: 副教授

电子邮箱: jinhailin17@163.com


一、基本情况:

19947月毕业于芜湖师专数学系(大学专科)。200110月毕业于安徽师范大学数学系(大学本科)。20107月毕业于苏州科技大学基础数学专业,获理学硕士学位。20147月毕业于上海大学基础数学专业,获理学博士学位。19947月至20078月从事中学数学教育。20148月至今在苏州科技大学数学任教。201311-20141月访问波兰科技大学(UTP201812月获批硕导资格。20199月起指导硕士研究生,截至20257月已经毕业研究生6人,在读3人。

二、主要研究领域及学术成就:

主要研究领域为凸几何分析。在凸体对称度研究中,给出了n维等宽体Minkowski非对称度分布定理,证明了正则单形完备体是最不对称的等宽体。该方面的结果被收录到3凸几何专著中: Convex bodies: the Brunn-Minkowski theory》第二版2014 R. Schneider Measures of symmetry for convex sets and stability 2015 G. Toth以及《Bodies of Constant Width 2019 H. Martini, L. Montejano D. Oliveros。在凸体的Orlicz Brunn-Minkowski理论研究中率先证明了凸体的Orlicz Brunn-Minkowski不等式,以及对偶Orlicz Brunn-Minkowski不等式。参与国家自然科学基金面上项目5项,主持江苏省自然科学基金面上项目1项。在Advances in Math., Advances in Applied Math., Discrete Comput. Geom., Proceedings of A.M.S., Canad. Math. Bull., Geom. Dedicata, Chin. Ann. Math. (Ser. B), Acta Math. Sin. ( Engl. Ser.), Taiwan. J. Math., Math. Inequal. Appl., Beitr. Algebra Geom., J. Geom.等国际期刊正式发表学术论文29篇。论文The Orlicz Brunn-Minkowski inequalityAdvances in Math. 2014入选ESI高被引论文。

三、代表性科研成果:

[1] H.L. Jin, D.D. Lai, Suwei Li, The Orlicz Gaussian Minkowski problem for general meausres, Discrete Comput. Geom., DOI: 10.1007/s00454-025-00740-7.

[2] Suwei Li, Q.Y. Chen, H.L. Jin*, The Orlicz chord Minkowski problem for general measures , Advances in Applied Math., 165(2025), 102839.

[3] Suwei Li, H.L. Jin*, The discrete Orlicz chord Minkowski problem, Canad. Math. Bull., 68(2025), 154-165.

[4] Q.Y. Chen, P.W. Hou, H.L. Jin*, Diameter and circumradius of reduced spherical polygons, Beitr Algebra Geom., 66(2025), 125-133.

[5] Q.Y. Chen, B. Chen, H.L. Jin*, The circumradius of planar reduced convex bodies, J. Geom., (2023) 114: 6.

[6] P.W. Hou, H.L. Jin*, The Minkowski measure of asymmetry for spherical bodies of constant width, Wuhan Univ. J. Nat. Sci., 27(2022), no.5,367-371.

[7] D.D. Lai, H.L. Jin, The phi-Brunn-Minkowski inequalities for general convex bodies, Bol. Soc. Mat. Mex., 27(2021), 78.

[8] D.D. Lai, H.L. Jin*, p-Minkowski type measures of asymmetry for convex bodies, Wuhan Univ. J. Nat. Sci., 26(2021), no.4,315-323.

[9] D.D. Lai, H.L. Jin, The dual BrunnMinkowski inequality for log-volume of star bodies, Journal of Inequalities and Applications, 2021: 112.

[10] H.L. Jin, Electrostatic capacity and measure of asymmetry, Proceedings of A.M.S., 147(2019), 4007-4019.

[11] H.L. Jin, The log-Minkowski measure of asymmetry for convex bodies, Geom. Dedicata,196 (2018), 2734.

[12] X.Y. Zhou, H.L. Jin*, Critical chords of convex bodies of constant width, Wuhan Univ. J. Nat. Sci., 23 (2018), 461-464.

[13] P.Z. Guo, H.L. Jin*, Groemer-Wallen measure of asymmetry for Reuleaux Polygons, J. Geom. 108 (2017), 879884.

[14] H.L. Jin, Asymmetry of Reuleaux Polygons, Beitr. Algebra Geom., 58(2017) , 311317.

[15] H.L. Jin, S.F. Yuan, G.S. Leng, On the dual Orlicz mixed volumes, Chin. Ann. Math. Ser. B., 36(2015), no. 6, 1019-1026.

[16] S.F. Yuan, H.L Jin, G.S. Leng, Orlicz Geominimal surface areas, Math. Inequal. Appl., 18(2015), 353-362

[17] H.L. Jin,  Asymmetry for convex bodies of revolution, Wuhan Univ. J. Nat. Sci., 20(2015), no.2, 97-100.

[18] 袁淑峰, 金海林 一些几何不等式的等价性, 上海大学学报(自然科学版), 25(2015). DOI: 10.3969/j.issn.1007-2861.2014.01.043

[19] H.L. Jin, G.S. Leng, Q. Guo, Mixed volumes and measures of asymmetry, Acta Math. Sin. ( Engl.  Ser.),  30(2014), 1905-1916.

[20] H.L. Jin, Q. Guo,The mean Minkowski measures for convex bodies of constant width, Taiwan. J. Math., 18(2014), 1283-1291.

[21] H.L. Jin, S. F. Yuan, A sharp Rogers-Shephard type inequality for Orlicz-difference body of planar convex bodies, Proc. Indian Acad. Sci. (Math. Sci.), 124(2014), no. 4, 573-580.

[22] D.M. Xi, H.L Jin, G.S. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math., 260(2014), 350-374.

[23] H.L. Jin, On the 1-measure of asymmetry for convex bodies of constant width, Beitr. Algebra Geom. 55(2014), no. 1, 201-206.

[24] H.L.Jin, G.S.Leng, Q. Guo, Orlicz metrics of convex bodies, Bol. Soc. Mat. Mex., 20(2014), 49-56.

[25] H.L. Jin, G. Leng, Q. Guo, Stability for the Minkowski measure of convex domains of constant width, J. Geom. 104(2013), 505-513.

[26] H.L. Jin, Q. Guo, A note on the extremal bodies of constant width for the Minkowski measure, Geom. Dedicata,164(2013), 227-229.

[27] H.L. Jin, Q. Guo, Asymmetry of convex bodies of constant width, Discrete Comput. Geom. 47 (2012), 415-423.

[28] Q. Guo, H.L. Jin, On a measure of asymmetry for Reuleaux polygons, J. Geom., 102 (2011), 73–79.

[29] H.L. Jin, Q. Guo, On the asymmetry for convex domains of constant width, Comm. Math. Res. 26(2010), 176-182.

四、主持或参与科研项目:

1.江苏省自然科学基金面上项目,BK20171218Meissner猜想及相关问题,2017/07-2020/0610万元,已结题,主持;

2.国家自然科学基金面上项目,12071334,球面空间凸性理论,202101-20241248万,已结题,参加,3/8

3.国家自然科学基金面上项目,12071277,几何不变量与几何测度的新等周问题及相关研究,202101-20241248万,已结题,参加,2/9

4.国家自然科学基金面上项目,11671293,凸体和函数空间上的赋值与拟赋值,2017/01-2020/1248万元,已结题,参加,2/9

5.国家自然科学基金面上项目,11271282,有限维空间凸体间Banach-Mazur距离等不变量,2013/01-2016/1260万元,已结题,参加,4/9

6.国家自然科学基金面上项目,11271244Mahler猜想及相关问题,2013/01-2016/1260万元,已结题,参加;4/9



上一条:刘增 下一条:国起

Copyright undefinedcopy; 2020.苏州科技大学数学科学学院

手机版