一、基本情况
张毅,男,1964年生,博士,教授,博士生导师。1983年毕业于东南大学力学师资班专业,获理学学士学位;1988年毕业于东南大学一般力学专业,获工学硕士学位;1998年毕业于北京理工大学应用数学专业,获理学博士学位。2000年晋升教授,2010年晋升二级教授。曾担任苏州科技大学副校长(2006-2017)。兼任中国力学学会理事、动力学与控制专业委员会分析力学专业组组长,江苏省力学学会副理事长,《苏州科技大学学报》(自然科学版)主编等。曾担任教育部首届高等学校力学教学指导委员会非力学类专业力学基础课程教学指导分委员会委员等。曾被授予江苏省劳动模范、江苏省师德模范、苏州市劳动模范、苏州市优秀共产党员、苏州市十大杰出青年等荣誉称号。获“江苏力学奖”,江苏省首届“十佳研究生导师”提名奖。被遴选为江苏省“333高层次人才培养工程”首批中青年科学技术带头人、江苏省普通高校新世纪学术带头人培养人选等。
二、主要研究领域及学术成就
长期从事分析力学和应用数学领域的教学和科研工作。主要研究方向:完整和非完整力学;伯克霍夫力学;力学系统的对称性与不变量;时间尺度上变分问题与分析力学;分数阶变分问题与分析力学等。主持国家自然科学基金面上项目5项、江苏省自然科学基金面上项目1项、住建部科技项目2项等,已在Chaos Soliton. Fract., Nonlinear Dyn.,Int. J. Non-Linear Mech.,Acta Mech.,J. Vib. Control, J. Math. Phys.,Commun. Nonlinear Sci. Numer. Simulat.,Int. J. Theor. Phys.,Fract. Calc. Appl. Anal.,Acta Mech. Sin.,Theor. Appl. Mech. Lett.,Chin. Phys. B,Commun. Theor. Phys.,《中国科学》,《力学学报》,《物理学报》等国内外重要学术期刊以第一作者或通讯作者发表学术论文400余篇,其中150余篇论文被SCI检索,100余篇论文被EI检索。所指导的5名博士生中,获校优秀博士学位论文3篇;已毕业的31名硕士生中,获省优秀硕士学位论文3篇,校优秀硕士学位论文10篇,5人考取博士研究生,3人获“华为杯”全国研究生数学建模竞赛二等奖,7人获“国家奖学金”等。主讲过《分数阶微积分基础》《微分方程的对称性》《李群李代数对经典力学系统的应用》《伯克霍夫系统动力学》《非完整系统力学基础》等5门研究生课程。
三、代表性科研成果
[1] Yuan-Yuan Deng, Yi Zhang*. Herglotz type Noether theorems of nonholonomic systems with generalized fractional derivatives. Theoretical and Applied Mechanics Letter, 2025, 15(2): 100574.
[2] Yi Zhang*, Lin-Jie Zhang, Xue Tian. Conservation laws for systems of non-standard Birkhoffian with fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2024, 130: 107722.
[3] 张毅*. 非保守广义Chaplygin系统的Herglotz型Noether定理. 力学学报, 2024, 56(9): 2695-2702.
[4] Li-Qun Huang, Yi Zhang*. Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments. Chaos, Solitons and Fractals, 2024, 182: 114854.
[5] Yuan-Yuan Deng, Yi Zhang*. Noether’s theorem of Herglotz type for fractional Lagrange system with nonholonomic constraints. Fractal and Fractional, 2024, 8: 296.
[6] Li-Qun Huang, Yi Zhang*. Herglotz-Type vakonomic dynamics and its Noether symmetry for nonholonomic constrained systems. Journal of Mathematical Physics, 2024, 65(7): 072901.
[7] 董欣畅, 张毅*. 含时滞非完整系统的对称性与Herglotz型守恒量. 力学学报, 2024, 56(11):3302-3311.
[8] Yi Zhang*, Yun-Die Jia. Generalization of Mei symmetry approach to fractional Birkhoffian system. Chaos, Solitons and Fractals, 2023, 166: 112971.
[9] 张毅*, 宋传静, 翟相华. 变加速动力学系统的广义高斯最小拘束原理. 力学学报, 2023, 55(5): 1174-1180.
[10] Xin-Chang Dong, Yi Zhang*. Herglotz-type principle and first integrals for nonholonomic systems in phase space. Acta Mechanica, 2023, 234: 6083-6095.
[11] Shi-Xin Jin, Yi Zhang*. The approximate Noether symmetries and conservation laws for approximate Birkhoffian systems. Nonlinear Dynamics, 2023, 111: 13235-13243.
[12] Min-Yu Cai, Yi Zhang*. Herglotz-d'Alembert principle and conservation laws for nonholonomic systems with variable mass. Indian Journal of Physics, 2023, 97(7): 2109-2116.
[13] Yi Zhang*. Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether’s theorem. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106214.
[14] 张毅*, 陈欣雨. 变质量力学系统的广义高斯原理及其对高阶非完整系统的推广. 力学学报, 2022, 54(10): 2883-2891.
[15] Xue Tian, Yi Zhang*. A structure-preserving algorithm for time-scale non-shifted Hamiltonian systems. Theoretical and Applied Mechanics Letter, 2022, 12: 100368.
[16] Xue Tian, Yi Zhang*. Caputo △-type fractional time-scales Noether theorem of Birkhoffian systems. Acta Mechanica, 2022, 233(11): 4487–4503.
[17] Xiang-Hua Zhai, Yi Zhang*. Noether-type conserved quantities on time scales for Birkhoffian systems with delayed arguments. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92(3): 425-432.
[18] Yi Zhang*. Mei’s symmetry theorem for time scale nonshifted mechanical systems. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100286.
[19] 张毅*, 田雪, 翟相华, 宋传静. 时间尺度上Lagrange系统的Hojman守恒量. 力学学报, 2021, 53(10): 2814-2822.
[20] 张毅*. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, 2021, 70(24): 244501.
[21] Yi Zhang*. Mei symmetry and conservation laws for time-scale nonshifted Hamilton equations. Advances in Mathematical Physics, 2021, 2021: 7329399.
[22] Xue Tian, Yi Zhang*. Fractional time-scales Noether theorem with Caputo △ derivatives for Hamiltonian systems. Applied Mathematics and Computation, 2021, 393: 125753.
[23] Jin-Yue Chen, Yi Zhang*. Time-scale version of generalized Birkhoffian mechanics and its symmetries and conserved quantities of Noether type. Advances in Mathematical Physics, 2021, 2021: 9982975.
[24] Yun-Die Jia, Yi Zhang*. Fractional Birkhoffian mechanics based on quasi-fractional dynamics models and its Noether symmetry. Mathematical Problems in Engineering, 2021, 2021: Article ID 6694709.
[25] Yi Zhang*. Adiabatic invariants and Lie symmetries on time scales for nonholonomic systems of non-Chetaev type. Acta Mechanica, 2020, 231(1): 293-303.
[26] Yi Zhang*. Herglotz's variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether's theorem. Symmetry, 2020, 12(5): 845.
[27] 张毅*. 弱非线性动力学方程的Noether准对称性与近似Noether守恒量. 力学学报, 2020, 52(6): 1765-1773.
[28] Yi Zhang*. Theory of generalized canonical transformations for Birkhoff systems. Advances in Mathematical Physics, 2020, 2020: 9482356.
[29] Lin-Jie Zhang, Yi Zhang*. Non-standard Birkhoffian dynamics and its Noether's theorems. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105435.
[30] Juan-Juan Ding, Yi Zhang*. Noether's theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos, Solitions and Fractals, 2020, 138: 109913.
[31] Xin-Xin Xu, Yi Zhang*. Adiabatic invariants for disturbed fractional Hamiltonian system in terms of Herglotz differential variational principle. Acta Mechanica, 2020, 231(12): 4881-4890.
[32] Ying Zhou, Yi Zhang*. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mechanica, 2020, 231(7): 3017-3029.
[33] Сюэ Тянь, И Чжан*. Адиабатические инварианты типа Герглотца для возмущенных неконсервативных Лагранжевых систем. Теоретическая И Математическая Физика, 2020, 202(1): 143-154
[34] Jing Song, Yi Zhang*. Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Indian Journal of Physics, 2020, 94(4): 501-506.
[35] Yi Zhang*, Xiang-Hua Zhai. Perturbation to Lie symmetry and adiabatic invariants for BirkhoffIan systems on time scales. Communications in Nonlinear Science and Numerical Simulation, 2019, 75: 251-261.
[36] Yi Zhang*, Xue Tian. Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems. Physics Letters A, 2019, 383: 691-696.
[37] Yi Zhang*. Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos, Solitons and Fractals, 2019, 128: 306-312.
[38] Yi Zhang*. Generalized canonical transformation for second-order BirkhoffIan systems on time scales. Theoretical & Applied Mechanics Letters, 2019, 9: 353-357.
[39] Xiang-Hua Zhai, Yi Zhang*. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019, 25(3): 581-592.
[40] Xue Tian, Yi Zhang*. Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos, Solitions and Fractals, 2019, 119: 50-54.
[41] Xiang-Hua Zhai, Yi Zhang*. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019, 136(3): 439-443.
[42] Xue Tian, Yi Zhang*. Time-scales Herglotz type Noether theorem for delta derivatives of Birkhoffian systems. Royal Society Open Science, 2019, 6 (11): 191248.
[43] Yi Zhang*, Xue-Ping Wang. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. International Journal of Non-Linear Mechanics, 2018, 105: 165-172.
[44] Yi Zhang*. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43.
[45] Chuan-Jing Song, Yi Zhang*. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018, 21(2): 509-526.
[46] Xue Tian, Yi Zhang*. Noether’s theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. International Journal of Theoretical Physics, 2018, 57(3): 887-897.
[47] Xue Tian, Yi Zhang*. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mechanica, 2018, 229(9): 3601-3611.
[48] Yi Zhang*. Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem. Acta Mechanica, 2017, 228(4): 1481-1492.
[49] Xiang-Hua Zhai, Yi Zhang*. Noether theorem for non-conservative systems with time delay on time scales. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 32-43.
[50] Chuan-Jing Song, Yi Zhang*. Conserved quantities for Hamiltonian systems on time scales. Applied Mathematics and Computation, 2017, 313: 24-36.
[51] Chuan-Jing Song, Yi Zhang*. Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. International Journal of Non-Linear Mechanics, 2017, 90: 32-38.
[52] Yi Zhang*, Xiao-San Zhou. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4): 1867-1876.
[53] 张毅*. 相空间中非保守系统Herglotz广义变分原理及其Noether定理. 力学学报, 2016, 48(6): 1382-1389.
[54] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 81-97.
[55] Bin Yan, Yi Zhang*. Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mechanica, 2016, 227(9): 2439-2449.
[56] Yi Zhang*, Xiang-Hua Zhai. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480.
[57] Chuan-Jing Song, Yi Zhang*. Noether theorem for Birkhoffian systems on time scales. Journal of Mathematical Physics, 2015, 56(10): 102701.
[58] Shi-Xin Jin, Yi Zhang*. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model. Nonlinear Dynamics, 2015, 79(2): 1169-1183.
[59] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86.
[60] Zi-Xuan Long, Yi Zhang*. Fractional Noether theorem based on extended exponentially fractional integral. International Journal of Theoretical Physics, 2014, 53(3): 841-855.
[61] Ju Chen, Yi Zhang*. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model. Nonlinear Dynamics, 2014, 77(1-2): 353-360.
[62] Yi Zhang*, Yan Zhou. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics, 2013, 73(1-2): 783-793.
[63] 张毅*. 非保守动力学系统Noether对称性的摄动与绝热不变量. 物理学报, 2013, 62(16): 164501.
[64] 张毅*, 金世欣. 含时滞的非保守系统动力学的Noether理论. 物理学报, 2013, 62(23): 234502.
[65] Yi Zhang*. Fractional differential equations of motion in terms of combined Riemann- Liouville derivatives. Chinese Physics B, 2012, 21(8): 084502.
[66] Yi Zhang*. The method of variation of parameters for integration of a generalized Birkhoffian system. Acta Mechanica Sinica, 2011, 27(6): 1059–1064
[67] Yi Zhang*. The method of Jacobi Last Multiplier for integrating nonholonomic systems. Acta Physica Polonica A, 2011, 120(3): 443-446.
[68] 张毅*. 非完整力学系统的Hamilton对称性. 中国科学: 物理学 力学 天文学, 2010, 40(9): 1130-1137.
[69] Yi Zhang*. Conformal invariance and Noether symmetry, Lie symmetry of Birkhoffian systems in the event space. Communications in Theoretical Physics, 2010, 53(1): 166-170.
[70] 张毅*. 自治广义Birkhoff系统的平衡稳定性. 物理学报, 2010, 59(1): 20-24.
[71] 张毅*. 恰普雷金系统相对运动的稳定性. 兵工学报, 2010, 31(1): 58-62.
[72] Yi Zhang*. Stability of manifold of equilibrium states for nonholonomic systems in relative motion. Chinese Physics Letters, 2009, 26 (12): 120305.
[73] Yi Zhang*. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space. Chinese Physics, 2009, 18(11): 4636-4642.
[74] 张毅*. 广义Birkhoff系统的Birkhoff对称性与守恒量. 物理学报, 2009, 58(11): 7436-7439.
[75] 张毅*, 葛伟宽. 非Chetaev型非完整系统的Lagrange对称性与守恒量. 物理学报, 2009, 58(11): 7447-7451.
[76] 张毅*. 事件空间中Birkhoff系统的参数方程及其第一积分. 物理学报, 2008, 57(5): 2649-2653.
[77] 张毅*. 事件空间中Birkhoff系统的Noether理论. 物理学报, 2008, 57(5): 2643-2648.
[78] 张毅*. Birkhoff系统约化的Routh方法. 物理学报, 2008, 57(9): 5374-5377.
[79] Yi Zhang*. Routh method of reduction for Birkhoffian systems in the event space. Chinese Physics, 2008, 17(12): 4365-4368.
[80] 张毅*. 事件空间中力学系统的微分变分原理. 物理学报, 2007, 56(2): 655-660.
[81] 张毅*. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量. 物理学报, 2007, 56(4): 1855-1859.
[82] Yi Zhang*, Feng-Xiang Mei. A geometric framework for time-dependent mechanical systems with unilateral constraints. Chinese Physics, 2006, 15(1): 13-18.
[83] 张毅*, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量. 物理学报, 2006, 55(7): 3237-3240.
[84] 张毅*. Birkhoff系统的一类新型绝热不变量. 物理学报, 2006, 55(8): 3833-3837.
[85] Yi Zhang*. A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics. Chinese Physics, 2006, 15(9): 1935-1940.
[86] Yi Zhang*. Integrating factors and conservation laws for relativistic mechanical system. Communications in Theoretical Physics, 2005, 44(2): 231-234.
[87] 张毅*. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984.
[88] 张毅*. Birkhoff系统的Hojman定理的几何基础. 物理学报, 2004, 53(12): 4026-4028.
[89] Yi Zhang*. A new conservation law derived from Mei symmetry for the system of generalized classical mechanics. Communications in Theoretical Physics, 2004, 42(6): 899-902.
[90] Yi Zhang*. Conservation laws for mechanical systems with unilateral holonomic constraints. Progress in Natural Science, 2004, 14(1): 55-59.
[91] 张毅*, 葛伟宽. 用积分因子方法研究非完整约束系统的守恒律. 物理学报, 2003, 52(10): 2363-2367.
[92] Yi Zhang*, Feng-Xiang Mei. Form invariance for systems of generalized classical mechanics. Chinese Physics, 2003, 12(10): 1058-1061.
[93] 张毅*, 梅凤翔. 广义经典力学系统对称性的摄动与绝热不变量. 物理学报, 2003, 52(10): 2368-2372.
[94] 张毅*. Birkhoff系统的一类Lie对称性守恒量. 物理学报, 2002, 51(3): 461-464.
[95] Yi Zhang*, Feng-Xiang Mei. A differential geometric description for time-independent Chetaev’s non-holonomic mechanical system with unilateral constraints. Acta Mechanica Solida Sinica, 2002, 15(1): 62-67.
[96] 张毅*, 梅凤翔. 单面完整约束力学系统的Lie对称性研究. 科学通报, 2000, 45(4): 353-356.
[97] Yi Zhang*, Feng-Xiang Mei. Equations of motion for nonholonomic mechanical systems with unilateral constraints. Applied Mathematics and Mechanics, 1999, 20(1): 59-67.
[98] Yi Zhang*, Feng-Xiang Mei. Noether’s theory of mechanical systems with unilateral constraints. Applied Mathematics and Mechanics, 2000, 21(1): 59-66.
[99] Yi Zhang*, Mei Shang, Feng-Xiang Mei. Symmetries and conserved quantities for systems of generalized classical mechanics. Chinese Physics, 2000, 9(6): 401-407.
[100] 张毅*. Birkhoff系统的一类积分不变量的构造. 力学学报, 2001, 33(5): 669-674.